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Abstract In this study, based on behavioral and neurophysi-
ological facts, a new hierarchical multi-agent architecture is
proposed to model the human motor control system. Per-
formance of the proposed structure is investigated by sim-
ulating the control of sit to stand movement. To develop
the model, concepts of mixture of experts, modular struc-
ture, and some aspects of equilibrium point hypothesis were
brought together. We have called this architecture MODu-
larized Experts Model (MODEM). Human motor system is
modeled at the joint torque level and the role of the muscles
has been embedded in the function of the joint compliance
characteristics. The input to the motor system, i.e., the cen-
tral command, is the reciprocal command. At the lower level,
there are several experts to generate the central command to
control the task according to the details of the movement. The
number of experts depends on the task to be performed. At
the higher level, a “gate selector” block selects the suitable
subordinate expert considering the context of the task. Each
expert consists of a main controller and a predictor as well as
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several auxiliary modules. The main controller of an expert
learns to control the performance of a given task by gener-
ating appropriate central commands under given conditions
and/or constraints. The auxiliary modules of this expert learn
to scrutinize the generated central command by the main con-
troller. Auxiliary modules increase their intervention to cor-
rect the central command if the movement error is increased
due to an external disturbance. Each auxiliary module acts
autonomously and can be interpreted as an agent. Each agent
is responsible for one joint and, therefore, the number of the
agents of each expert is equal to the number of joints. Our
results indicate that this architecture is robust against external
disturbances, signal-dependent noise in sensory information,
and changes in the environment. We also discuss the neuro-
physiological and behavioral basis of the proposed model
(MODEM).

Keywords Human motor control · Mixture of experts ·
Modular structure · Multi-agent · Hierarchical structure ·
Equilibrium point hypothesis · Sit to stand

1 Introduction

How the central nervous system (CNS) determines the motor
commands to make a movement is one of the main questions
of human movement studies.

In one possible modeling approach, principles of optimal
control are used to answer this question. Although modeling
approaches based on optimal control (Harris and Wolpert
(1998) and Todorov and Jordan (2002)) are in general able
to explain different aspects of human motor control, they are
in our opinion computationally too demanding to describe
the computations performed by the CNS. Indeed, any given
optimal controller must repeat the whole computational
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procedure whenever there are uncertainties (like unpredicted
external disturbances) in the system (here: in the motor sys-
tem). As Cisek (2005) mentioned “a plan which optimizes
nearly every aspect of movement” places heavy computa-
tional burden on the CNS. This fact seems to us to contradict
the principle of minimal interaction proposed by Balasub-
ramaniam and Feldman (2004) which states that the motor
control system has a natural tendency to minimize the overall
activity and interactions in both the CNS and the musculo-
skeletal system. From this stand point, a suitable model to
describe human motor control system should be less compu-
tationally demanding.

In this article, we are therefore looking for models to
describe the motor control system which are computation-
ally less demanding and at the same time interesting features
such as motor memory, the capability to use different types of
learning, e.g., learning from trial and error or imitation learn-
ing, generalization, knowledge of physical properties of the
body and the environment. The notion of dynamical internal
models is well suited to provide these interesting features. In
this point of view, which is inspired from the field of robotics,
it is proposed that the brain learns to construct internal mod-
els of the motor system and the environment in interaction
with it. There are two groups of internal models; inverse and
forward dynamics models (Gomi and Kawato 1993; Wolpert
and Kawato 1998; Doya et al. 2002). According to another
point of view, some more sophisticated models were devel-
oped based on both inverse and forward internal models with
a modular structure (Gomi and Kawato 1993; Jordan and
Jacobs 1994; Wolpert and Kawato 1998; Haruno et al. 2001;
Doya et al. 2002; Haruno et al. 2003). Those models are
in agreement with the distributed and hierarchical nature of
the motor control system and they are computationally less
demanding than simple forward or inverse internal models. A
famous architecture proposed by Haruno et al. (2001) is the
Modular Selection and Identification for Control (MOSAIC)
for parallel-distributed switching. MOSAIC is a hierarchical
motor control structure to describe human motor learning.
The original idea of this study was proposed previously by
several researchers (Wolpert et al. 1998; Wolpert and Kawato
1998; Wolpert and Ghahramani 2000). This model was devel-
oped for motor control under multiple different contexts and
consists of several modules. Each module includes a forward
model, named the predictor, and an inverse model, called the
controller (Haruno et al. 2001). This structure simultaneously
learns multiple internal inverse models to control the task,
and at the same time it learns to select the suitable inverse
models for a specified environment. The inverse model calcu-
lates a motor command, while the forward model predicts the
outcome of the current command. The accuracy of the pre-
diction of the forward model of each module is represented
by the responsibility signal of the module. The responsibil-
ity signals were applied to weight the outputs of each inverse

model. These signals were also used for competitive learning
of the forward and inverse models (Haruno et al. 2001; Doya
2002).

Another modular structure proposed for motor control
is the mixture of experts (MEX) (Gomi and Kawato 1993;
Jordan and Jacobs 1994; Graybiel et al. 1994). In the MEX,
each expert is a function approximator. Outputs of the experts
are linearly combined by a classifier (gating module) that
plays the role of a centralized switch. Each expert model is
trained using a subpart of the input data corresponding to
conditions and constraints that it must become specialized
in. The gating module determines the degree of contribution
of each expert in generating the final output. Therefore, the
selection (switching activity) is centralized in the gating mod-
ule and is independent of the activity of the expert modules.

In comparison to the MEX model, internal models of the
MOSAIC are experts for the controlled objects (here in the
field of motor control, controlled object is a given move-
ment) and contribute significantly in the switching activity
(Imamizu et al. 2004). In the MOSAIC model, multiple pairs
of forward and inverse models are coupled. For example,
when we use a new pen to write, forward models (Blakemore
et al. 1998; Iacoboni 2001; Miall et al. 2001) of different
types of pens simultaneously predict sensory feedback using
an efference copy of motor commands. Then, the prediction
of each forward model is compared with actual feedback. A
forward model with the smallest error indicates that partic-
ular forward model must have been the proper predictor in
the current context. Then, the inverse model paired with that
suitable predictor is considered as the suitable controller. In
this way, the selection mechanism, which is a soft selection,
depends on the internal models.

One can generate a given movement under different con-
ditions and contexts. For example, the main features of the
kinematics of the movement during writing are conserved,
while the pen and its effect on the dynamics of the system
are different. This special case alludes to a more general con-
clusion, that in higher levels of human motor control system,
there is most probably a unique representation for any given
movement, and when the movement is executed, variations
and uncertainties in the dynamics of the motor system are
compensated at lower levels of motor control system. There-
fore, according to different observations and neurophysio-
logical facts, we may conclude that an appropriate model to
describe the human motor control system has a hierarchical,
distributed, and modular structures (Pocock and Richards
1999; Guyton and Hall 2006).

As an alternative to internal models, equilibrium point
hypothesis (EPH) is another theoretical framework employed
in human motor control field (Feldman and Latash 2005; Gu
and Ballard 2006). According to the theory of EPH, move-
ment is controlled by shifting muscle activation thresholds.
In other words, limb postures are interpreted as equilibrium
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points (Gu and Ballard 2006) and a movement is generated
by transitions from one body posture to another by resetting
control parameters of the motor system (Balasubramaniam
and Feldman 2004). In this case, the previous position is a
deviation from newly readdressed position, and the forces are
generated to transfer a joint to its new equilibrium. One of
the important notions used by EPH is Joint Compliant Char-
acteristics (JCC) (Domen et al. 1999). Slope and intercept of
JCC, defined as C and R, are two main regulatory parameters
(variables) that CNS uses to control the joint compliant and
through it equilibrium point of the limb. In fact, JCC and the
external force field together determine the equilibrium point
of a limb. The parameter R is interpreted as the equilibrium
position of the joint in the absence of the external force.
According to the physiological notions, it corresponds to the
reciprocal activation of the antagonist muscles of the joint.
Command C based on the same point of view, represents
the co-activations of the antagonist muscles. To accomplish
a given movement, the JCC changes along with the external
forces. This will need changes in R and C parameters dur-
ing the movement. Therefore, R and C can be considered as
control parameters determining dynamic sequence of equi-
librium positions.

As Imamizu et al. (2004) have discussed centralized and
distributed switching are two strategies applied by the CNS
to control motor tasks. Distributed switching strategy can
be expressed by modular structures like MOSAIC, and cen-
tralized switching can be modeled by structures like MEX.
Therefore, we proposed a new architecture based on the con-
cepts of modular architecture, including both centralized-
and decentralized-distributed switching strategies together
with the concept of the reciprocal command deduced from
EPH. We named this model MODularized Experts Model
(MODEM).

The architecture of MODEM is developed based on the
fact that the cerebellum and basal ganglia create distinct
closed loop circuits with different regions of the cerebral
cortex including the frontal, premotor, primary motor, and
parietal cortices (Middleton and Strick 1998). MODEM has a
hierarchical structure (two main levels) and at the lower level
it is consisted of several experts. A “gate selector” block is in
the highest level to select which subordinate experts should
attempt to control the task at the ongoing situation. In the pro-
posed architecture, each expert consists of a main controller
and several auxiliary modules. Each auxiliary module is in
fact an agent which cooperates in controlling the task perfor-
mance if the main controller fails to do it accurately. An agent
in each expert is responsible for correcting the movement of
one joint. Each agent learns to reject a simple constant dis-
turbance in its corresponding joint and then generalizes this
learning to a more complicated situation (different distur-
bances). The output of MODEM, i.e., the central command
that is sent to the motor system, is the reciprocal command.

Thereby, in accordance with neuromuscular properties, the
role of the reciprocal command in generating joint torques
is integrated into the architecture of MODEM. An important
advantage of this feature is that the intrinsic feedback in mus-
cles (due to the structure of JCC) will increase the stability of
the model (Partridge 1967). In this study, it is assumed that
the co-activation command is constant.

The performance of the proposed structure is investi-
gated by simulating the control of sit-to-stand (STS) transfer
from a chair. Our results show that the MODEM architec-
ture can robustly learn and control the movement. According
to our simulation results, the proposed architecture controls
robustly the movement in the presence of additional noise in
sensory feedback, external disturbance, and changes in the
dynamics of the environment.

The article is organized as follows: in Sect. 2, the MODEM
architecture is introduced. We explain how the controllers
must be trained by a sequential procedure. Then, in Sect. 3,
the simulation experiments are presented. In Sect. 4, we dis-
cuss possible evidences justifying correspondences between
the MODEM architecture and behavioral observations as
well as neurophysiological facts. Finally, in Sect. 5 concludes
the article.

2 Introducing the architecture of MODEM

Based on different observations, one may distinguish
between two separate processes in human motor control sys-
tem: motor planning and motor execution (Nakano et al.
1999; Cisek 2005). At the level of motor planning, the CNS
plans a desired movement in accordance with the type of task
to be performed and the corresponding physical and physio-
logical constraints. Then at the level of execution, the CNS
generates appropriate central motor commands so that the
motor system may track the desired trajectory appropriately.
At this level, the CNS functions as a controller.

The proposed structure for motor execution level and its
relation to the motor system are shown in Fig. 1A. In the pro-
posed structure, the motor control system consists of the fol-
lowing functional blocks: the MODEM, the forward model
of motor system and the feedback controller. the structure of
MODEM will be explained in more detail later. The model of
motor system consists of two blocks: the JCC block and the
model of body-skeletal dynamics. The JCC block is defined
in Sect. 2.1 using (1) and the Model of body-skeletal dynam-
ics for the case study used in this article will be explained in
Sect. 3.2. The “forward model of motor system” is similar to
“the model of motor system”. The feedback controller is a
proportional controller that will be explained in more detail
in Sect. 3.4.

The local feedback loop, which consists of the forward
model of the motor system and the feedback controller, is in
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Fig. 1 A Schematic of whole system including the MODEM. The
motor control system is including the MODEM, the Forward Model
of Motor System and the Feedback Controller; the Feedback Controller
is described by Eq. 9. The central command (R̃) which is generated by
motor controller in interaction with the motor system, is transformed
into the joint torque by the JCC block (described by (1)). The noise

in the sensory information is modeled by an additional noise block.
Furthermore, the External Disturbance block models the external dis-
turbances applied to the motor system (at different joints) during task
performance. B Schematic of the MODEM. The MODEM is described
by (5)

fact the inner loop of a Smith predictor structure. The forward
model predicts the results of the actual central motor com-
mand. The prediction outcome is compared with the desired
movement and the resulted error is used to improve the com-
mand (R) generated by the MODEM.

In addition, the noise in the sensory information and the
external disturbance in the motor system are modeled by an
additional noise input signal and an “External Disturbance”
block in Fig. 1A, respectively.

2.1 Central motor commands and joint torques

In the structure proposed by Haruno et al. (2001) for motor
execution level, there are two groups of controllers: the so-

called MOSAIC, and a feedback controller (a proportional
controller). The MOSAIC controller uses a combined policy,
i.e., it applies feedforward and feedback information to gen-
erate central motor commands. In this study, we propose a
new structure for the motor execution level (see Fig. 1A). The
combined controller in this case consists of a set of multiple
experts (see Fig. 1B). Each expert has in turn a modular struc-
ture (see Fig. 2). That is why we called this model MODEM.

The central command (R̃) is generated in joint angle space
by the motor controller and in interaction with the motor sys-
tem and the environment. This is one of the main differences
between the MODEM and the MOSAIC models. Central
commands in MOSAIC are muscle force or joint torque.
According to Feldman and Latash (2005), the reciprocal
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Fig. 2 Schematic of the MODEM. Details of an expert including the
main controller (described by linear network), main predictor (described
by (2)) and the auxiliary modules are shown. Each auxiliary module
is consisted of a controller (described by linear network), a predictor

(described by (3)) and a responsibility estimator (described by (4)).
Each auxiliary module cooperates autonomously in generating the con-
trol signal

command can generate appropriate joint torques considering
the simplified joint stiffness relation (represented in Fig. 1A
by JCC block):

τi = Ki (ϕa,i − Ri ) (1)

where τi is the torque of the i th joint, Ri is the reciprocal
command for the i th joint and is the i th element of the final
central command R. ϕa,i is actual angle of the i th joint, and
Ki is stiffness of the i th joint.

Darainy et al. (2004) through their measurements have
shown that joint stiffness has a dynamic property and changes
in the course of the movement. However, for the sake of
simplicity, in this study the joint stiffness is assumed to be
constant during movement, which implicitly means that the

co-activation command is also supposed to be constant. This
assumption is justifiable, because, there are studies in which
the joint stiffness is assumed to be constant during the move-
ment and they still provide reasonable results (Greene and
McMahon 1979; Mizrahi and Susak 1982; Ozguven and
Berme 1988; Kim et al. 1994; Farley et al., 1998 Spagele
et al. 1999).

2.2 Controllers and modules

The CNS can learn and control a new movement in dif-
ferent contexts using its previous experiments and through
repeating new tasks. To describe this feature in the proposed
model, MODEM consists of several subordinate experts
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which collaborate in controlling the task according to the
weights assigned to them by a “gate selector” in a higher
level (Fig. 1A). In this architecture, the knowledge of con-
trolling a task is divided between the experts with regards
to the nature of the task. Each expert is specialized in con-
trolling a part of the task or the task under special condi-
tions and constraints. On the other hand, the “gate selector”
block assigns the control of the task to a subordinate expert
according to the contextual information which is feed-back
by sensory information signals or by top-down information
from higher-motor-related areas. Therefore, enough knowl-
edge or well-defined criteria must be embedded in the “gate
selector” block. In fact, the “gate selector” codes the knowl-
edge of the control of different dynamics of the system into
the experts. In other words, the “gate selector” confers the
control of the motor system to the appropriate expert under
current conditions (or switched between experts). The details
for a case study will be explained in Sect. 3.3.

Since there are delays in the pathway of the sensory infor-
mation feedback in the biological system, a delay block is
also considered to model the whole structure (see Fig. 1A).
100-ms delay was set for all of the joints (Kandel et al. 2000).

The structure of the experts is illustrated in more detail in
Fig. 2. The architecture of each expert is modular. There are
several auxiliary modules in each expert. This is one of the
main differences between MODEM and the common struc-
ture of MEX. In MODEM, each expert consists of a main con-
troller and a main predictor as well as the auxiliary modules.
In each expert, the main controller generates the main cen-
tral command and the auxiliary modules correct the central
command when it fails to produce an appropriate command,
especially when there is an external disturbance. The num-
ber of auxiliary modules is equal to the number of degrees of
freedom (DOF) of the motor system; i.e., in each expert, each
auxiliary module is responsible for 1DOF. The correction sig-
nal of an auxiliary module depends on the responsibility of
that module which in turn is a function of the similarity of the
main predictor and corresponding predictor of that auxiliary
module.

The main controller of each expert generates the
original central command to control the task. To compen-
sate deviations from desired movements due to unpredict-
ed disturbances or other reasons, each auxiliary module
will contribute independently in correcting the main central
command according to its corresponding degree of respon-
sibility. The responsibility of each module determines the
amount of cooperation of that module. In other words, each
auxiliary module contributes autonomously in generation of
the central command. Since the auxiliary modules are auton-
omous, they are considered as agents.

What we called controller (main controller of each expert
and the controller of each agent) is in fact an inverse model
of the body-skeletal dynamics together with the JCC (named

“the model of motor system” in Fig. 1A). The input of each
controller block is the desired movement, i.e., the joint angle
and the angular velocity and acceleration of the joints.

The central command generated by MODEM is adjusted
by the feedback command (Rfb). The main controller of each
expert generates the main central command only using the
feed-forward information, i.e., the desired movement. The
output signals of the auxiliary modules are generated using
the information of the desired and actual movements, and the
efference copy.

Linear networks are used to implement the controllers. A
linear network is a Multi-Layer Perceptron (MLP) network,
i.e., a kind of artificial neural network with linear activation
function and without any hidden layers. While, the control-
lers are realized using linear networks, we will see later that
the auxiliary modules adjust the central command through
nonlinear relations.

The inputs of the main predictors are sensory information
(actual movement) and the delayed efference copy gener-
ated by that expert (reciprocal command). The inputs of the
predictor of each auxiliary module are delayed desired move-
ment and the reciprocal command of its corresponding expert
(see Fig. 2). The outputs of the main predictor and the pre-
dictors of the auxiliary modules of the j th expert are all joint
torques and are determined by Eqs. 2 and 3, respectively.

τ̂ k
a, j = Kk(ϕa,k − Rk

j ) (2)

τ̂ ∗k
i, j = Kk(ϕ

∗
k − Rk

j ) (3)

where τ̂ k
a, j and τ̂ ∗k

i, j are the kth element of the estimated joint
torques generated by the main predictor and the predictor of
the i th module in the j th expert, respectively. k is between
1 and m; m is the total number of the joints. Rk

j is the kth
element of the reciprocal command vector generated by the
j th expert. ϕa,k and ϕ∗

k are the actual and desired angle of
the kth joint, respectively. Kk is the stiffness of the kth joint.

The responsibility of each module is calculated by Eq. 4.

λi j = 0.5 + 0.5 tanh

( |τ̂ i
a, j − τ̂ ∗i

i, j |
Wi j

− Ti j

)
(4)

where λi j is the responsibility factor of the i th module of
the j th expert. Ti j (threshold) and Wi j (weight) are tuning
factors to adjust the quality of cooperation of each joint. The
responsibility of an agent can be very small when the similar-
ity between the output of the main predictor and the predictor
of that agent is high. In other words, the agents have more
influence in generating the commands when the main con-
troller cannot control the task properly.

The total central command is the weighted summation of
the output of the main controller plus the outputs of control-
lers of agents each weighted by the responsibility signal λi j

and a scaling factor:
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R =
n∑

j=1

G j

×
(

R0 j +
m∑

i=1

Ri jλi j Si j

(
ϕ∗

i (t − td) − ϕ
(t−td)
a,i

))

(5)

where R0 j is the main central command generated by main
controller of j th expert. Ri j and λi j are the central command
and responsibility factor corresponding to i th modular con-
troller of j th expert, respectively. G j is a weight assigned to
the j th expert by the “gate selector” to show the contributions
of that expert. ϕ∗

i and ϕa,i are desired and actual movements
of the i th joint, respectively and, Si j and t are the scaling
factor and time variable, respectively.

2.3 Learning method

In MODEM, it is assumed that the desired movement is
already known to the motor control system (already devel-
oped in the motor planning level) and it is considered as a
prior knowledge which is embedded in the system.

On the other hand, the appropriate number of experts is
chosen based on the changes in the dynamics of the system
in interaction with its environment. Therefore, we divide the
data into different classes, each class corresponding to one
part of the task which is defined according to the interac-
tion of the motor system with its environment. Each class or
part is called a subtask. Therefore, for each expert the data
belonging to the corresponding subtask should be used to
train its controllers.

Inspired by the idea of the movement primitives (Schaal
2002; Schaal et al. 2003), we assumed that the experts have
learnt the control of the corresponding subtasks separately,
and later these experts were coordinated by a higher level
critic to control a more complex task under new conditions.
Therefore, we used a sequential learning method to train
different components of the experts. As the first step, the
experts are trained in the absence of the agents. In fact, the
main controllers play the most important role in generating
the control signal. We do not change the parameters of the
main controllers after this part of learning. The controllers
are trained using a supervised learning algorithm with error
back-propagation method. In this study, we used a set of
recorded data (see Sect. 3.3) to represent the desired move-
ment. The desired outputs of the controllers have been calcu-
lated from these data. This technique is called teacher forcing
technique (Williams and Zipser 1989; Doya and Yoshizawa
1989). This method is an efficient technique for autonomous
dynamic systems.

To train the controllers, we need the desired central com-
mand (Ri∗(t)). It is assumed that desired joint torque at i th
joint (τ ∗

i ) corresponds to the desired central command (Ri∗).

Knowing the desired movement (ϕ∗
i ) and stiffness of i th joint,

the reciprocal command of that joint can be calculated by (6).

Ri∗(t) = ϕ∗
i (t) − τ ∗

i (t)

Ki
(6)

Ri∗(t) is used to train the controllers. The desired joint torque
is calculated from dynamical equations of the body-skeletal
dynamics for the desired movement (see Sect. 3.2).

The data used to train the main controller of an expert
are the desired movement (consisting of desired joint angles
and their corresponding angular velocities and accelerations)
and its corresponding reciprocal command (see Fig. 2). In this
case, the output is the central command vector.

In the next step, after the training of the main controllers
is completed, the auxiliary modules are to be trained one by
one. Each time a constant disturbance is applied in one of
the joints and the corresponding auxiliary module in each
expert is trained under this new condition. In fact, the corre-
sponding auxiliary module in each expert learns to generate
a correction command, so that the movement is performed
correctly under the new condition. Finally, after all auxiliary
modules have been trained separately, MODEM is ready to
control the task with or without external disturbance.

3 Validation of the model through simulation

We investigate the performance of the proposed architecture
through simulation studies. For this purpose, we will study
the ability of MODEM to control a given movement (task)
robustly in the presence of external disturbances applied
on the motor system, noise in sensory information, and
changes in the environment. We also compare performance
of MODEM in the absence of its agents with that of the
MOSAIC model.

3.1 Chosen task

The chosen task is STS. In most of previous studies in the
field of motor control modeling, researchers have considered
reaching movements as a case study (Bhushan and Shadmehr
1999; Haruno et al. 2001; Haruno et al. 2003). The proposed
structure (MODEM) is well-suited for controlling complex
tasks that consist of different subtasks. Therefore, we decided
to study a task including distinguishable subtasks. There are
different studies demonstrating the existence of different sub-
tasks for the STS transfer (for example Emadi Andani et al.
2007 and 2009); whereas, reaching movement is a very sim-
ple task in comparison to STS and most probably (according
to the mentioned criteria in the previous section) it consists of
only one single subtask. Consequently, we considered STS
as our case study. It should be noticed that dynamic stability
of the whole motor system is an important issue during STS
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task performance; this issue does not come into question for a
reaching task. This makes the control of STS more challeng-
ing than the reaching task. As we will see later, dynamical
stability considerations (relative position of the body cen-
ter of pressure) plays an important role in the adjustment of
model parameters (Si j , Ti j , and Wi j ).

We distinguish two main phases of STS based on the inter-
action of the body (motor system) with its environment: (I)
before leaving the seat, when the body is in contact with the
seat; (II) after leaving the seat, when the body has no con-
tact with the seat and is extending upward toward standing
posture. Therefore, the moment when the body leaves the
seat, i.e., the seat-off moment, is a crucial moment at which
the motor system switches between these two phases (trans-
ferring from phases I to II). Later, we will see that the higher
level “gate selector” learns a simple criterion to separate these
two phases.

3.2 Model of the system and recorded data

The human motor system consists of the muscle dynamics
and the body-skeletal dynamics. At each joint, two groups
of muscles (agonists and antagonists) generate the neces-
sary torques in cooperation. To avoid the complexities result-
ing from choosing the suitable muscle model as well as the
problem of intrinsic redundancy of the number of muscles
controlling each joint, we considered only the body-skeletal
dynamics when modeling the motor system. All the men-
tioned complexities could result in questions which were not
our main concerns in this article. However, the JCC block
represents the overall function of the agonist and antagonist
muscles in generating necessary joint torques.

Following our previous study (Emadi Andani et al.
2007), a four-link 3DOF model including feet, shank,
thigh, and upper body in the sagittal plane was devel-
oped to describe body-skeletal dynamics. The feet were
assumed to remain fixed on the floor (Fig. 3). Each joint
has 1DOF. Before leaving the seat, the contact between
the body and seat was modeled as a soft point-contact. It
was assumed that the two reaction forces in the horizontal
and vertical directions exerted by the soft seat are acting
only on the hip joint (Fig. 3). These forces were generated
based on two couples of nonlinear spring-damper models
(Davidson and Wolpert 2004) described by (7) and (8).

Fych =
{

(Ky − By ẏ)(e−ay(y−y0) − 1) Fych > 0
0 Fych � 0

(7)

Fxch =
{

Kx (e−ax (x−x0) − 1) − Bx
ẋ

y−y0 + 0.1 Fych > 0
0 Fych � 0

(8)

where Fxch and Fych are the chair reaction forces in horizon-
tal and vertical directions, respectively. Kx , Ky , Bx , By, ax ,

Fig. 3 Four link rigid model of the body. Reaction forces exerted by
the seat are generated by two pairs of nonlinear spring-damper (Emadi
Andani et al. 2007)

and ay are constant parameters. The dot sign show the first
derivative and, x0 and y0 are the rest position of the spring
models in horizontal and vertical positions, respectively.

Using Newton–Euler equations three nonlinear differen-
tial equations were obtained to describe the dynamics of the
body-skeletal model during STS transfer (Hemami 1982;
Craig 1986). The necessary anthropometric parameters of
the body-skeletal dynamics including segmental mass, the
distance of the center of mass of segments from distal joints,
and the inertial constants of each segment were estimated
by a bilinear regression formula using the body height and
weight (Zatsiorsky and Seluyanov 1983).

The data to train and test the proposed structure were col-
lected at the Gait and Posture Laboratory of University of
Waterloo (Moraes et al. 2002). Data included the trajectories
of joint angles of one side of the body of one subject in the
sagittal plane. The subject has repeated the task 20 times.
Sampling frequency of data was 60 Hz.

All recorded trajectories were aligned based on the seat-
off moment. Then for each repetition of the task, the data
between 1.5 s before seat-off and 1.5 s after seat-off were
chosen. Ten sets of data were used to train the model (named
training data) and the rest of the data were used to test the
model (named test data). The joint torques corresponding to
desired movements are calculated using the Newton–Euler
equations; Eqs. 7 and 8 are the external forces applied at the
hip joint before seat-off. Anthropometric parameters of the
subject were used in the dynamical equations of the motor
system. Subject’s weight and height were 57.4 kg and 1.71 m,
respectively. Assuming constant stiffness for each joint, the
desired reciprocal commands were calculated and used to
train the controllers using (6).

3.3 Simulation of the learning procedure

The STS task is made of two main phases; before and after
leaving the seat. Our previous simulation results (Emadi
Andani et al. 2007) confirmed this partitioning. In that study,
we proposed an automatic learning method for the MOSAIC
structure, which extracts the constitutive subtasks of a given
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movement, and we applied the method to the STS task. The
results confirmed that there are two main subtasks in the STS.
One of the important results obtained in that study was that
the switching moment between the two subtasks is the seat-
off moment. Therefore, two main controllers, one per expert,
are needed to control this task: one before seat-off and the
other after seat-off moment. Therefore, to control the STS
task, two experts (n = 2), each with one main controller, one
main predictor, and three auxiliary modules corresponding
to the three joints (m = 3) is needed.

The higher level “gate selector” selects the appropriate
expert by sensing the seat-off moment. This information is
extracted from the sensory data fedback by the propriocep-
tors. According to this criterion, the task must be controlled
by the first expert before seat-off moment, and the second
expert has to control the task after this crucial moment. We
considered hard switching between the experts, i.e., the value
of G j is either 0 or 1. Therefore, at any time only one expert
performs the control of the task. In this study, G j is one (zero)
and zero (one) for the first (second) expert before (after)
leaving the seat. The value of G j is determined through the
delayed sensory feedback about the hip contact with the seat.

The data partitioned into two classes with reference to
the seat-off moment and each class of data was applied to
train the corresponding main controller of the experts, sep-
arately. In the training data of the two experts, an overlap
about the switching moment was created. To train the first
expert, in addition to the pre-seat-off data, the data of move-
ment up to 150 ms after seat-off were also taken into account.
The first expert is responsible for controlling the movement
before seat-off. In fact, the first expert is forced to learn the
beginning of the sub-task 2 to compensate for the uncertainty
resulting from the sensory delay. In this way, the controller of
the first sub-task will not be any more sensitive to the exact
detection of the seat-off moment, or in other words to the
exact moment of the switching between two control mod-
ules. In this case, the continuity of the central command will
also be hold.

The central commands generated by the main controller
of the experts are shown in Fig. 4. As Fig. 4 indicates, cen-
tral commands generated by the two experts are identical for
ankle and knee joints between seat-off and the perception of
the seat-off by the CNS. Perception of the seat-off occurs
with a delay of 100 ms relative to the actual seat-off (delay
in the sensory feedback). For the hip joint, the range of iden-
tical functioning of the two experts is vaster, i.e., to control
this joint, principally, one expert is sufficient. In other words,
principles governing the movement of the upper trunk before
and after seat-off are almost the same.

In Fig. 5, one can see the torques generated as a result of
the central commands of the main controllers. The results
indicate that the joint torques and output of the feedback
controllers are continuous during the movement.

Fig. 4 Central commands generated by the main controller of expert
#1 (red dashed line) and expert #2 (green dotted line) for each joint
are shown separately. The seat-off moment and its perception, which is
occurred with a delay of 100 ms, are shown by solid and dashed vertical
black lines, respectively. Seat-off is occurred when vertical seat reac-
tion force is equal to zero. Output of the gate selector for each expert is
shown on bottom-right figure

Fig. 5 Torques generated by MODEM controller and corresponding
feedback controller (condition 1-2 of the Table 1). The torques corre-
sponding to ankle, knee, and hip joints are shown by solid blue line,
dashed green line and dashed-dot red line, respectively

After training the main controller of the experts, a 20 N m
constant external disturbance was exerted at each joint sepa-
rately, and the training of the controllers of the corresponding
agents in each expert was completed.

3.4 Adjusting parameters of the model

The parameters of the feedback controller were determined
through a trial and error procedure after training the MODEM
structure in order to decrease the activity of the feedback
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controller (see (10)) and at the same time increase dynamical
stability for the training data.

The feedback controller block in Fig. 1, which in fact con-
sists of three separate feedback controllers, one for each joint
(hip, knee, and ankle) is described by Eq. 9.

Rfb = K (ϕ∗ − ϕ̂a) + D(ϕ̇∗ − ˆ̇ϕa) (9)

where K (=diag[1.7, 1.7, 1.7]), D (=diag[0.8, 0.8, 0.8]), and
Rfb are diagonal 3×3 matrices. ϕ∗ (desired joint angle), ϕ̇∗
(desired angular velocity of joint), ϕ̂a (predicted joint angle)
and ˆ̇ϕa (predicted angular velocity of joints) are 3×1 vectors.

After training the controllers and choosing the parameters
of the feedback controller, we adjusted Si j , Wi j , and Ti j to
provide the dynamical stability of the movement for train-
ing data in the presence of a constant external disturbance.
Dynamical stability means to keep the center of pressure
during movement under the base of support. It was assumed
that these parameters were constant during task performance.
However, we considered identical scaling factor (Si j = 100),
normalizing factor (Wi j = 4), and threshold (Ti j = 2) for all
modules.

3.5 Simulation studies

Performance of the proposed model was investigated under
several conditions. Three control models were considered:
(1) with only a feedback controller to control the task, (2) with
a feedback controller and the MODEM with two experts and
no auxiliary modules; in this case, the structure is equivalent
to the MEX model. Finally, (3) with a feedback controller
and the MODEM. We studied the performance of the three
mentioned structures when controlling the STS transfer.

It was observed that the simple feedback controller could
not control the task and the system was unstable. This obser-
vation is not surprising, because there is no proof for global
asymptotic stability of a linear PID controller when control-
ling a robot manipulator (Loria et al. 2000). Therefore, the
performance of this model will not be included in our dis-
cussions.

Two criterions to compare the performance of the two
other structures, i.e., MODEM and MEX, are defined: (I)
the level of the Activity of the Feedback Controller (AFC)
(defined by (10)), (II) the tracking error (defined by (11)).

AFC
�=

√∫ tf
0 (τPD(t))2dt

tf
(10)

Tracking error
�=

√∫ tf
0 (ϕa(t) − ϕ∗(t))2dt

tf
(11)

The AFC is an indicator for the ability of the control-
lers in controlling the task, especially in the presence of

disturbance. The tracking error is an indicator for the quality
of the generated movement.

3.5.1 Simulation experiment I: disturbance rejection

In the first group of simulation studies, we investigated the
performance of MODEM without any external disturbance,
and in the presence of slow and fast-dynamic external dis-
turbances (sinusoidal signals) applied at the shoulder. The
frequencies of the external sinusoidal disturbance were con-
sidered 1/π Hz (as the slow dynamic) and 3/π Hz (as the fast
dynamic).

Six conditions are tested, and the results are summarized
in Table 1. The six conditions (1-1 to 1-6) correspond to two
structures for the motor controller (the MODEM and the
MEX) and three cases of no external disturbance, and slow
and fast external disturbances at the shoulder.

Figure 6 compares the effect of the feedback controller
in generating the compensatory torque under conditions 1-1
and 1-2 for a test data. As it can be seen the activity of the
feedback controller after stabilizing the movement when the
MODEM architecture is used is significantly smaller than
when the MEX is used (see Fig. 6, for time >2.5 s).

Comparing the results of conditions 1-1 and 1-2 in Table 1,
one concludes that the control of the task with no external
disturbance is performed more accurately by the MODEM
architecture. Looking into the results of conditions 1-3 and
1-4 in Table 1, one concludes that the control of the task in
the presence of external disturbance with slow dynamic at
the shoulder is performed more accurately by the MODEM
architecture. Also, the results of condition 1-5 and 1-6 in
the Table 1 show that the control of the task in presence of
external disturbances with fast dynamic at the shoulder is
performed more accurately by the MODEM architecture. In
addition, the MEX structure cannot control the task in the
presence of large slow/fast-dynamic external disturbances,
while the MODEM can accomplish the task. It was also
observed that the amplitude of the external disturbance for
conditions 1-3 and 1-5, when MEX is the controller, was cru-
cial. The system was not stable if the amplitude was more
than 10 N m (for slow dynamics) and 3 N m (for fast dynam-
ics). On the contrary, using the MODEM model, the system
was stable in the presence of disturbances with higher ampli-
tudes. In this case, the amplitude of the disturbance could be
increased up to 40 N m (30 N m) for the external sinusoidal
disturbance with slow (fast) dynamics. In summary, it was
observed that the MODEM structure results in smaller track-
ing errors and AFC factor when compared to the MEX (see
Table 1). In addition, the MODEM structure was more stable
and robust in the presence of larger external disturbances in
comparison to the MEX.
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Table 1 The level of the AFC and the tracking error of the motor controller when MODEM and MEX structure control STS transfer with and
without external disturbance (applied at the shoulder)

Shoulder disturbance Controller Index of the
condition

AFC (N m) Tracking error (◦)

Ankle Knee Hip Ankle Knee Hip

No external load MEX 1-1 7.6 5.8 3.9 1.7 0.9 0.8
MODEM 1-2 6.6 3.7 3.9 0.4 0.2 0.4

Slow-dynamic external load amplitude=10 N m, f = 1/π Hz MEX 1-3 6.4 9.1 18.9 1.0 2.3 3.7
MODEM 1-4 4.6 3.3 3.7 0.3 0.2 0.5

Fast-dynamic external load amplitude=3 N m, f = 3/π Hz MEX 1-5 6.5 5.0 4.3 1.5 0.7 0.6
MODEM 1-6 6.6 3.7 3.7 0.4 0.2 0.4

External disturbances are sinusoidal signals with f = 1/π (slow) and 3/π (fast) Hz. Attributes slow and fast were used to distinguish rate of changes
of the disturbance signals in time domain

Fig. 6 The effects of the
feedback controller in
generating the compensative
torques are illustrated in A:
condition 1-1 and B: condition
1-2 (ankle (solid blue line), knee
(dashed green line) and hip
(dotted dashed red line) joints)

Fig. 7 The desired (dashed red line) and actual (solid black line) posi-
tion of the COM. Seat-off moment is specified by asterisk. The results
are corresponding to condition 1-4 of the Table 1

Figure 7 shows the trajectory of the COM correspond-
ing to desired (dashed red line) and actual (solid black line)
movement in the sagittal plane for condition 1-4 of Table 1.

3.5.2 Simulation experiment II: environmental change

The next experiment considers the control of the task for the
test data in a different environment. This study simulates the
case when one learns to stand up from a given seat and then
the characteristics of the seat are changed. The elasticity fac-
tor of the chair in vertical direction (Ky in (7) and Fig. 3) is
an important parameter because it carries a main part of the

body weight before the seat-off. In this case, we changed Ky

and tested the model for the MODEM and the MEX archi-
tectures: Ky was increased by 100% and decreased by 20%.
The results are summarized in Table 2. All controllers are
trained for the same value of the vertical elastic parameter of
that chair.

Table 2 shows that in the presence of uncertainties in the
environment, the MODEM architecture results in more accu-
rate tracking of the desired movement than the MEX. It must
be mentioned that the movement was not stable if the elas-
ticity of the seat was increased more than 100% or decreased
less than 20% for the MEX, but the MODEM could con-
trol the task for a wider range of values. In addition, com-
paring the tracking errors depicted in Table 1 (conditions
1-1 and 1-2, when the environment has no uncertainty) and
Table 2 (when the environment is different from what has
been learnt before), it is concluded that MODEM tracks the
desired movement for different unpredicted variations in the
vertical elasticity of the chair with almost the same tracking
error as in the case of the original environment.

3.5.3 Simulation experiment III: robustness against noise

The next group of simulations considers the control of the
task in the presence of noise in the sensory feedback when the
test data was used. In this case, we considered 10% of addi-
tional signal-dependent normal noise in the sensory informa-
tion from joint angles and angular velocities. We tested the
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Table 2 The level of the AFC and the tracking error of the motor controller when MODEM and MEX structure control STS transfer with different
chairs for two modes of controller

Ky Controller Index of the condition AFC (N m) Tracking error (◦)

Ankle Knee Hip Ankle Knee Hip
+100% MEX 2-1 9.2 9.2 5.1 1.9 1.6 0.8
+100% MODEM 2-2 12.6 6.9 12.4 0.5 0.3 0.4
-20% MEX 2-3 30.2 26.6 16.3 6.9 4.5 2.3
-20% MODEM 2-4 16.5 7.6 6.6 0.9 0.5 0.4

model 50 times for each of the MODEM and MEX structures
and the results including mean values and standard deviations
of the AFC and tracking errors are depicted in Table 3. The
desired (red dashed line) and the mean trajectories of the
50 movements (black solid lines) are illustrated in Fig. 8A
and b when the MODEM and the MEX structures were
tested, respectively. The green area shows the variability of
the movement for the 50 trials in the presence of noise (see
Fig. 8). It is also seen that the green area in Fig. 8A is nar-
rower than the corresponding area in Fig. 8B. The results
of Table 3 also show that the MODEM architecture reduced
significantly the tracking error and its standard deviation.

In general, the results show that the MODEM architecture
is more robust against noise in sensory information than the
MEX.

3.5.4 Simulation experiment IV: robustness against
uncertainty in the forward model of motor system

Unquestionably the quality of the forward model of motor
system (see Fig. 1) which is a component of the inner loop
of a Smith predictor influences the function of the feedback
controller. It means that inaccuracy of the forward model
results in increasing AFC as well as increasing the tracking
error and finally decreasing the dynamical stability. For this
reason, the performance of the proposed structure was stud-
ied in the presence of uncertainty in the forward model of
motor system.

To show the performance of the MODEM with inaccuracy
in the forward model, we add normal noise to the stiffness
(K ) of each joint in the forward model of the motor system.
This noise will model up to 20% variation in the stiffness of
the joints. The results are depicted in the Table 4. Comparing
indices of conditions 1-1 and 1-2 of the Table 1 and 4-1 and
4-2 of the Table 4, one concludes that the AFC is increased in
the presence of the noise but the tracking errors do not show
any significant changes.

On the other hand, adding the same inaccuracy in the for-
ward model of the motor system when the MEX is as the
combined controller, one observes that the AFC of the knee
joint is increased from 5.8 N m (Table 1) to 7.5 N m (Table 4),
while the tracking errors are 0.9◦ for accurate forward model
and 0.9±0.3(◦) for inaccurate forward models. For a similar
situation, when the MODEM is as the combined controller,

the AFC of the knee joint is increased from 3.7 N m (Table 1)
to 6.8 N m (Table 4), while the tracking errors are about 0.2(◦)
for both the conditions. An important issue is that the stan-
dard deviations of tracking error are less when the MODEM
is used, i.e., the agents decreased the variability of the move-
ment significantly and thus result in more robustness.

4 Discussion

In the MODEM structure, different important features of the
human motor control are brought together to develop a model
which behaves more in conformity with the recorded obser-
vations about human behaviors during a ballistic task per-
formance than previously developed models. That is why
two new features were added to the previously suggested
structures. In fact, the ideas of a hierarchical control struc-
ture and multiple internal models as well as that of EPH are
not new in this field (Feldman and Latash 2005). Whereas,
in the MODEM structure, the idea of the reciprocal com-
mand is integrated into the structure of a hierarchical MEX,
in which each expert is a paired forward–inverse model.
Previous models, like MOSAIC, were based on internal
models and did not show and explain the role of the recipro-
cal command in the movement control. Joint torques gen-
erated based on the reciprocal command (see (1)) results
in an internal and innate feedback at the motor system
which provides more stability for the movement (Feldman
and Latash 2005). The second new feature of MODEM is
disturbance rejection by agents with generalization capa-
bility.

In this section two aspects of the proposed model will be
discussed: (1) the MODEM architecture provides a consis-
tent formulation of how modular internal models can coop-
erate to perform a sequential movement and increase the
robustness against external disturbances, changing environ-
ment and, additional signal-dependent noise in the sensory
information; and then (2) the behavioral and the neurophysi-
ological supports of this structure.

First, we would like to discuss about the efficiency of
the MODEM structure in controlling any given task. The
local feedback loop in Fig. 1, consisting of the forward
model of the motor system and the feedback controller, is
in fact the inner loop of a Smith predictor structure. The
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Fig. 8 A The position of the COM of a performed movement which
was controlled using the MEX. B The position of the COM of a per-
formed movement which was controlled using the MODEM.
The COM of desired movement is shown by dashed red line, the mean

of several performed movement under noise in sensory information is
specified by black solid line, and the range of movement variability
performed in 50 trials is shown by shadow green area

Table 3 Mean value and standard deviation of AFC and tracking error of 50 different trials of the STS transfer in the presence of 10% additional
signal-dependent noise in sensory information for two modes of controller

Controller Index of the condition AFC (N m) Tracking error (◦)

Ankle Knee Hip Ankle Knee Hip

MEX 3-1 14.0 ± 2.08 18.9 ± 1.82 12.9 ± 1.82 2.12 ± 0.54 2.14 ± 0.51 1.67 ± 0.45
MODEM 3-2 14.9 ± 1.93 16.3 ± 1.22 12.7 ± 1.30 0.47 ± 0.10 0.31 ± 0.05 0.36 ± 0.04

Table 4 Mean value and standard deviation of AFC and tracking error of 10 different trials of the STS transfer in the presence of 20% additional
signal dependent noise in the stiffness (K ) of the joints for two modes of controller

Controller Index of the condition AFC (N m) Tracking error (◦)

Ankle Knee Hip Ankle Knee Hip

MEX 4-1 10.4 ± 1.8 7.5 ± 1.5 6.1 ± 1.4 1.9 ± 0.4 0.9 ± 0.3 1.0 ± 0.3

MODEM 4-2 10.9 ± 1.4 6.8 ± 0.7 8.9 ± 1.3 0.4 ± 0.07 0.2 ± 0.03 0.4 ± 0.06

agents (auxiliary modules) of each expert represent nonlinear
disturbance observers; in fact, they generalize the role of the
external feedback loop of a Smith predictor. These two types
of controllers, i.e., the feedback controller (Fig. 1) and the
other controllers in the auxiliary modules (Fig. 2), contribute
differently in controlling the task, because they have access
to different types of the information: the feedback control-
ler is working based on the predicted joint angle and pre-
dicted angular velocity. This loop is needed to compensate
the delay of the sensory feedback information. The auxil-
iary modules are working based on both the delayed sen-
sory feedback information and the desired movement. Since
the predicted information might be inaccurate, therefore,
another pathway is needed to improve the central commands
for controlling the task. The auxiliary modules or agents com-
pensate the error due to inaccuracy of the predicted infor-
mation.

The advantage of the agents along with the proposed mod-
ular structure becomes clearer when comparing the results of

Tables 1, 2, and 3. In Table 1 tracking errors of the MODEM
and MEX (MODEM without agents) structures are compared
for the test data. The results show that the tracking errors
of different joints are smaller when the controller is work-
ing together with the agents. Tables 2 and 3 also show that
the tracking errors of the MODEM structure are smaller in
the presence of uncertainties in the environment and in the
sensory feedback compared to the same situations when the
MEX structure is used. In summary, the simulation results
indicate that the tracking of the movement was performed
more robustly when the agents were included in the structure
of the controller.

In fact, the agents are modeling the generalization ability
of the CNS in rejecting unexpected disturbances. The agents
are trained to reject simple constant external disturbances
applied at hip, knee, and ankle joints, separately, and then
they generalize what they have learnt to more complex exter-
nal disturbances (like sinusoidal ones) which are applied at
another point (like shoulder).
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Table 5 The level of the AFC and tracking error of the motor controller when MOSAIC structure control STS transfer

Shoulder disturbance Index of the condition AFC (N m) Tracking error (◦)

Ankle Knee Hip Ankle Knee Hip

No external load 5-1 13.6 9.5 13.8 5.8 1.4 1.6
Slow-dynamic external load amplitude=10 N m, f = 1/π Hz 5-2 42 112 6.9 13.8 21.0 1.4
Fast-dynamic external load amplitude=3 N m, f = 3/π Hz 5-3 42.4 96.6 6.8 13.4 20.7 1.2

To show the advantage of considering the reciprocal
command instead of joint torque, we compare the perfor-
mance of the MEX (MODEM without agents) with the
MOSAIC structure with the same number of subtasks.

The results of the simulation for a test data for MOSAIC
structure are summarized in Table 5. Comparing the results
of the Tables 1 and 5 one concludes that MEX architecture
controls the task better than MOSAIC.

Therefore, the existence of the reciprocal command in the
structure of MEX results in a control with smaller tracking
error. In fact, a structure with the reciprocal command as
the central command, integrates the role of the local intrinsic
feedback in the motor system due to the JCC structure (see
Fig. 1). This feedback provides self control of the movement
and in the final analysis generates a more robust motion.

It might be worthy to remember that it is always possible to
find another controller structure which can achieve the same
or even better performance when compared to MODEM;
but the main motivation in developing this structure was
its neurophysiological and behavioral supports. There are
enough physiological supports in the literature for the first
distinctive feature of MODEM, i.e., the role of the reciprocal
command (Latash and Gottlieb 1991). Hence, we will try to
clarify the second feature (the structure of the agents) more
explicitly.

There are different mathematical and behavioral explana-
tions for the function of the agents. Alexandrov et al. (2005)
have investigated human balance control during standing
through a 3-link, 2-dimensional body-skeletal model in the
sagittal plane. Their study included sudden perturbations of
human posture during quiet stance. They used eigenvectors
of linearized motion equations (called eigenmovements) to
analyze the recorded movement and also developed a pos-
ture control model using the idea of eigenmovements. Each
one of the three eigenmovements was corresponding to the
movement mainly done by one of the ankle, knee, and hip
joints, respectively. The simulation results stated that using
the proposed eigenmovements the controller could control
the posture and provide its stability under different condi-
tions using the same strategies used by humans, i.e., ankle
and hip strategies. Alexandrov et al. (2005) stated that since
the independent eigenmovement control provides an impor-
tant simplification of control in the multijoint biomechan-
ical system, therefore, it is reasonable to assume that the
CNS might use this advantage. Independent eigenmovement

feedback control decouples the linearized dynamic equa-
tions of the body-skeletal system into a set of independent
equations; therefore, the CNS can control each eigenmove-
ment corresponding to the hip, knee, and ankle eigenmov-
ement independently (Alexandrov et al. 2005). In another
study, Alexandrov et al. (2001) showed also that the eigen-
movements can be independently controlled in a feed-for-
ward manner during voluntary upper trunk bending. Each
eigenmovement again corresponded to the movement of one
joint. As Nashner and McCollum (1985) and Horak and
Nashner (1986) stated, hip and ankle strategies are applied
independently under different experimental conditions; this
is in complete accordance with the suggestion that the eigen-
movements could be controlled independently by
the CNS (Alexandrov et al. 2005). Eigenmovements can be
considered as “natural synergies” by human body
anthropometric properties (Alexandrov et al. 2005). The CNS
controls a movement by proper coordination of the eigen-
movements. In fact, the CNS gets the information about the
current body configuration from the proprioceptive system to
estimate the contribution of each eigenmovement (Horak and
Macpherson 1996). Therefore, inspired by these facts, as an
extension to the idea of the eigenmovements (no linearization
applied to the equations of the body-skeletal model), we pro-
posed the agents in the MODEM structure (one might call the
agents as generalized eigenmovements). On the other hand,
although in the first sight the agents are functioning inde-
pendently, they indirectly influence each other. Indeed the
internal feedback of the efference copy, the movement error
signal and the estimated responsibility of each agent modu-
late the output of each agent (see Fig. 2 for more details). All
these facts can be interpreted also as coordinating ability of
the CNS.

Certainly, the neurophysiological supports of this idea
need to be studied more deeply, while its behavioral sup-
port seems to be more evident. However, there are evidences
indicating that the neurons selective for arm, leg, and face
are located within different parts of the Striatum in the basal
ganglia (Crutcher and DeLong 1984a,b); and within each
part, there are groups of neurons that respond selectively
before and during movement of the corresponding joint, often
only in a single direction (Crutcher and DeLong 1984a,b).
Similarly, other findings show that there are neurons in
other basal ganglia nuclei (subthalamic and globus palli-
dus nuclei) selective to the direction and speed of individual
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movements (Georgopoulos et al. 1983). These findings led
Alexander et al. (1986) to suggest that “the motor circuit
may be composed of multiple, parallel sub-circuits, or chan-
nels concerned with movement of individual body parts”.
The structure of the agents of MODEM has been inspired by
these observations.

The MODEM architecture suggests also that there are
two levels of representation within the sensorimotor system.
At the lower level, there exist fundamental experts whose
activity is dependent on the accurate motor action but not
on the overall task. At the higher level, the “gate selector”
block verifies the activations of the lower levels and there-
fore activity of the higher level is more task-specific and it
is not concerned with the precise details of the movement.
At the higher level, the activations may form an abstract rep-
resentation of the task. In addition, some interaction should
be seen between modules of an expert. Within an expert,
an interaction provided by the feedback of the central com-
mand is needed to construct the role of each module in gen-
erating the central command of that module (Fig. 2). Many
of the recent anatomical and physiological findings pointed
out that there are cerebro–cerebellar loops (Haruno et al.
2003; Imamizu et al. 2004). We propose that functions of
different parts of the cerebellum correspond to those of parts
of the proposed architecture like controllers and predictors.
Each part forms a within-layer loop with the cerebral cor-
tex, and these provide the internal cooperation of modules.
The interactions between the modules are provided at the
cerebro–cortical level by bidirectional cortico–cortical inter-
actions (Haruno et al. 2003). Middleton and Strick (1998)
showed that there are closed loop circuits between the cer-
ebellum, basal ganglia, and cerebral cortex. There is some
evidence for the cerebellar representation of the lower level
controllers supported by neurophysiological experiments in
the ventral paraflocculus of the monkey cerebellum during
ocular-following responses (Kawato 1999).

Mushiake and Strick (1995) reported that there are neu-
rons in the dentate nucleus related to the context of the
task. The experiment accomplished by Mushiake and Strick
(1995) was for a sequential task performance and they
observed that there were neurons in the dentate nucleus sensi-
tive to the arrangement of the task. The “gate selector” block
in our proposed architecture might be the best representation
for this observation. Haruno et al. (2003) have stated that
basal ganglia loops are involved in sequential movements or
switching tasks. The responsibility estimator might also be
considered as a suitable representative for this function at the
basal ganglia.

In another study, Kermadi and Joseph (1995) stated that
cells in the caudate nucleus (one of the nuclei of the basal
ganglia) fired during the performance of a sequential task if
the task was performed inaccurately. They have concluded
that the caudate nucleus plays an important role in error

correction during task performance. Therefore, we conclude
that there should be parts in the model (auxiliary modules)
which are using movement error (see Fig. 2). Consequently,
the proposed auxiliary modules might be located in the basal
ganglia.

Dove et al. (2000) performed an fMRI study using a task
switching study. They recognized regions that were activated
for the switching task in the lateral prefrontal cortex as well
as in supplementary motor area (SMA), pre-SMA (or F6),
lateral pre-motor cortex bilaterally, anterior insula bilater-
ally, left intraparietal sulcus, and cuneus/precuneus.

Consequently, the mentioned evidences are compatible
with the proposed structure for MODEM, which has a hier-
archical and distributed architecture, and can be realized by
the entire brain network including the cerebral cortex, cere-
bellum, and basal ganglia.

5 Conclusion

In this study, a two-level hierarchical and modularized archi-
tecture is proposed to model the human motor control system.
The proposed architecture integrates the following concepts:
(1) MEX to model the centralized switching between sub-
tasks, (2) Modular autonomous agents to model generaliza-
tion ability of the CNS in disturbance rejection; the agents
contribute in generating the central command based on a dis-
tributed switching structure, (3) The notion of the joint com-
pliance characteristics was taken from EPH to enhance the
physiological plausibility of the model, and (4) the notion
of internal models was also embedded in the MODEM to
explain the learning ability of the CNS. The higher-level
controller determines the role of each subordinate expert
based on prior higher-order knowledge. This block deter-
mines which expert should be active in the current situation.
Responsibility of each agent is determined by its correspond-
ing estimator block. Responsibilities of the agents can be zero
or nonzero and their effects are different in the tracking of
each joint angle. In fact, the role of each agent is determined
by itself. In other words, in each expert the agents (auxil-
iary modules) contribute in generating the central command
when their function is required. Each agent observes the per-
formance of the main controller and decides to help the main
controller or remain silent. This can be interpreted as atten-
tion. In other words, the attention of each auxiliary module
will be increased if the discrepancy between the prediction
of that auxiliary module and the main predictor (movement
error) is increased.

We described a possible correspondence between the
MODEM structure and the cerebro–cerebellar loop circuits
and the basal ganglia. We have also argued that the agents
might be considered as generalized eigenmovements.
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Our simulation results confirmed that the proposed archi-
tecture is capable of reliable controlling in the presence of
additional signal-dependent noise in sensory information,
external disturbance, and uncertain environment.

As a consequence of all mentioned facts this architecture
seems a more suitable candidate to describe human motor
control system than previously developed models.

However, the autonomous selection of the number of
experts by the CNS is an important open question. It seems
that it requires a sophisticated model of the higher level task
understanding. The answer/answers to this question will help
us to describe the learning procedure better, and it will also
help us to study performance of the MODEM structure for
other tasks, like locomotion. In this way one will be able
to improve this structure by observing its performance for
different tasks and under different conditions.
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